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Dynamics of randomly branched polymers: Configuration averages and solvable models
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Treating the relaxation dynamics of an ensemble of random hyperbranched macromolecules in dilute solu-
tion represents a challenge even in the framework of Rouse-type approaches, which focus on generalized
Gaussian structure€§GGSg. The problem is that one has to average over a large class of realizations of
molecular structures, and that each molecule undergoes its own dynamics. We show that a replica formalism
allows to develop analytically, based on an integral equation, a systematic way to determine the ensemble
averaged eigenvalue spectrum. Interestingly, for a specific probability distribution of the spring strengths of the
GGSs, the integral equation takes a particularly simple form. Given that several dynamical observables, such
as the mechanical moduG’(w) and G"(w), as well as the averaged monomer displaceni¥it)) are
relatively simple functions of the eigenvalues, we can use the obtained spectra to compute the corresponding
averaged dynamical forms. Comparing the results obtained from this approach and from extensive diagonal-
izations of hyperbranched GGSs we find a very good agreement.

DOI: 10.1103/PhysRevE.68.051106 PACS nunerd6.65+g, 82.70.Gg, 64.60.Ht, 83.80.Rs

I. INTRODUCTION Il. MODEL
A. The structures

Randomly branched polymers and in particular their dy- Each representative of the ensemble of randomly
namic behavior have recently attracted much interest. On thieranched structures is constructed from a single monomer to
theoretical side, this is due to the treelike structure of suchvhich one tries to attach with probabilifya bond that ends
polymers, which simplifies their treatment compared to com-at a new monomer. This attempt to add a bond is repdated
plex networks, and to the quest for understanding the dytimes, so that the number of bonds added to the starting
namical observables of such random netwdrks10. On  mMonomer obeys a binomial distribution wheris the maxi-
the experimental side, methods have been developed to syfium number of possible bonds added to one monomer. In
thesize large(regular as well as irregulabranched poly- the next step the procedure of trying to add a bond ending at

meric structures, i.e., dendrimers and their hyperbranchefl NeW monomer is repeatde- 1 times with each monomer
analoga[11—22. created in each step. Proceeding iteratively in the same way

with the monomers created in the last step, we obtain a ran-
mly branched loopless structure. The process of adding
onds ends if no bonds are added in a given step. This event
occurs with probability 1 below the percolation threshold
=1/(f—1) [27-29, but for p>p, there is a finite prob-
ility that the process never stops and an infinite structure is
reated.

While theoretical work on the dynamics of regular
branched dendrimers has made use of the high symmetry
these molecules to extrags far as possible in closed form
expressions for their eigenvalue spedit@,23, for general
hyperbranched polymers the corresponding spectra ha\P
been so far evaluated only using simulation and numericafg
diagonalization techniqudg]. In such approaches large en-
sembles of branched structures are generated; then the eigen-
frequency spectra of the structures are determined, from
which then averaged dynamical observables are calculated. In this section we recall the evaluation of the dynamical
We note that at long times the relaxation is dominated by th@roperties of polymers in the framework of generalized
lowest eigenfrequencies of all contributing structures; thes&aussian structuré&SGS3 [30], an extension of the Rouse
eigenfrequencies belong, as a rule, to the most elongatéHOdel[31]- GGSs are obtained by viewing the vertices of the_
structures in the ensemble, structures which are rare. EvErUCtUre as beads and the branches as entropic harmonic
dently, in an ensemble built by simulating a finite number of SPrNgs. The beads are then treated as Brownian particles

elements, the statistics of rare events prevents one from olsharacterized by their time dependent positior{¢). The
taining accurately the very low part of the spectrum. Hencepotentlal due to the harmonic springs with elastic conskant
the limiting long-time behavior of the dynamical relaxation 'S
forms cannot be obtained in this way.

In this vyork we foc_us on anoth<_ar approach, based on the udrh= K E Cij(Fi_Fj)2:5 2 AijFiFj ) (1)
analytical ideas of Kim and Harrig24] and of Bray and 2 5] 27
Rodgers[25]. Extending the analysis of gel dynamics by
Broderix et al. [26] we obtain an integral equation for the In a classical picturg30—-33 the symmetric matrixC=(Cj;)
eigenfrequencies of hyperbranched structures. indicates the connections: the off-diagonal eleme&)sare

B. Dynamics
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either 1 ifi andj are connected or O otherwise, and thewhere we setr={/K. We are also interested in the shear

diagonal element<; are zero. Furthermore, the positive stresso,, which is obtained by having the force fiekdr ,t)
semidefinite Laplace operaték=(A;,) of the structure is being proportional to a velocity field, which increases lin-

given by early in they direction:
N Fu(F D) =va(F,) = 8uk ()T . (7)
Aik:( S Cjk) —Ci. 2 . . . . .
=1 In this caseoy, is determined by the linear response relation
[32]
Later, in order to obtain a solvable equation for the eigenfre- :
guencies we will also generalize the potential given by Eq. :f TSttt
(1) by letting the strength of the springs’ constants vary over Txy ﬂ@dt G=1)x(V), ®

the lattice. Formally we will allow the nonzero values®©f o
to vary by picking them independently of each other from awhere the ensemble averaged shear relaxation mo@f(t)s
probability density distributionD(x), in the spirit of s given by
guenched disorder.

We consider purely relaxational dynamics in the presence

of an external space and time dependent fig(d,t). Thus

the time dependence of the bead positiﬁms) is given by .

the Langevin equation andn=N/V denotes the number of monomers per unit vol-
ume. Fork(t)=«, independent of, the intrinsic viscosity
7= 0oyy/ Kk reads

a(t)=ﬁkBwad)\m()\)exq—Z)\t/r), 9)
0

~ N
JSALUNES Ayt F(F D +6i(D), 3
at j=1

A T (=  p+(N)
n_nkBTEL dA N (10

wheref;(t) denote random forces with zero mean and satis-
fying (fiT(t’)fj(t))=2kBT§5ij S(t—t")1, where{ is the fric-  being again a function g6, (\). The same holds when the
tion coefficient and is the temperature. Equati@) is the  external field is oscillatory, say by havingt) = koe'"; this
direct GGS generalization of the classical Rouse equation fdeads to the storage modul@ (w):
linear polymers to network,30,32. it

From Eq.(3) various quantities can be calculated, which G/ (w)= Re( oxy(Diwe )
involve for a certain structurg only the density of eigenval- Ko
uesps(\) of the corresponding Laplace maté¢. Now, the

. . . . 2
bl d density of I b ~ * ®
ensemble averaged density of eigenvalues is given by :nkBTf dhp.(N) — (11)
0 (2N 1)+ w
P(7\)=<Ps(7\)>fzs wsps(N), (4 and to the loss modulug”(w):
. Oy (V)i we' !
where the sum extends over all structug&sachpg(\) is G"(w)=Im —
0

normalized, andvg denotes the probability that the structure

Sis created in the iterative growth procedure. . o Nl T
Now eachS created in this way is connected, so tiat =nkBTf d\p,(\)————. (12
has only one zero eigenvalue, whose corresponding eigen- 0 (2M7)?+ w?
vector is homogeneous. Therefore it is convenient to split off
the resultings peak of p(\) at A=0 with weight py by I1l. ANALYTIC TREATMENT VIA AN INTEGRAL
writing EQUATION
p(N)=pod(N) + (V). ) A. Derivation of an integral equation for the density of states

We now turn to the derivation of an integral equation for
the density of states, and follow the ideas developed by Kim
and Harris[24] to treat random hopping over a Cayley tree.

We note that the construction of Sec. Il Ais not changed if
we place the monomers from which our structures are built
on the nodes of arf-functional Cayley tree and fill in the
bonds, with probability, in the order of increasing chemical
1-exp—At/7) distance from the starting monomer 0 at the origin. On the

A ' other hand, we may draw the bonds in arbitrary order, given
(6)  that their probabilities of appearing are independent. There-

If we consider the forceF(FJ- )= 6;;0(t)F acting only
on bead and switched on at=0, we obtain for the mean
bead displacement at tinte averaged over the fluctuating
forces, all beads and the ensemble of structures, se¢3tef.

pot

1 (=
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fore wg defined in Sec. Il A is the same as the probability of i
finding the origin to belong to a® cluster in the bond di- exr{i(
luted Cayley tree. Due to the symmetry of the Cayley tree
this probability is also independent of the choice of any par-
ticular monomer as being the origin.

We consider now in the diluted Cayley tree picture for a

AC—2\1) 50132}

i((AC=\1)]¥2

particular monomey the diagonal elemerR;;(\) =R(\) of i c A
the resolvenR(\)=((A®—\1)"!), averaged over all bond X ex _E(Ek ASXixk— N2 X2 | +13xo],
distributions: i, j

(19

RO\ =((A°=A1) ;7). (13)
where\ contains implicitly a small, positive imaginary part

icul lizati f th | ‘ . which ensures the convergence. One now introduces the
A particular realizationC of the Cayley tree for a certain |\ 4 ansional vectod=(JM, 3@, . 3™ and focuses on
placement of bonds is formed by disjoint clusters of beads, a

cluster being a set of beads connected to each other by i .

bonds. Because of this th&® corresponding taC can be Z(J)=ex E(AC—M)OO J%|.

written in block diagonal form, with block matrices given by

the AS of the corresponding clusters. One has therefore Using Eq.(19) Z(J) can be written as a Gaussian integral
over then-dimensional vectors;= (x{*) x(2, ... x{M):

(20

(AC=ND) = (A=D1, (14) {(AC\1) ]2
Z(J)=[DetT f(l_[ drj>
where S consists only of the monomers belonging to the !
cluster ofj. Furthermore, the probabilities, s that a certain i
monomer is at a certain positidnof S do not depend ok; xex;{ - 5( 2 Aﬁ(f,‘fk—)\z rj2 +iJ-r0}.
one has thusv, s=ws/|S|, where|S| denotes the number of bk :
monomers insidé&. This leads to (21
9 In the spirit of the replica method, E¢L8) can be expressed

- in terms ofZ(J) of Eq. (20) as
ROM=2 2 ws(AS-AD)d (J) of Eq. (20)

—i n 9 2
E R()\)=<— > ( ) Z(J)

_ n 4= (a)
=2 Wsrg X (AS—AD). (15 119J
S S| &1

> : (22
J=0

where the average goes over all bond placements over the
Cayley tree. Introducing Eq21) into Eq.(22) results in

ol (M

i
xexp{—z(E ASTiTe— A rf)
Ik ]

Using the relation
i(A—\1)
e

D 2

Isi R(>\)=<
— i - S_ H -1
ps(h)=lim — 5 |mg1 [AS—(A+ie)l]l (16)

e—0

>. (23
for the normalized density of states of tBecluster, we ob-
tain from Eq.(4) The averaging procedure in this equation is considerably
simplified by taking the limitn—0, since then then/2)th
1 power of the determinant gives simply a factor 1.
p(AM)=lim —ImR(\ +ie), (17 Using Eq.(1) and the fact that the filling of bonds with
e—0 T probability p occurs independently leads to

i N
with R(\) being given by Eq(13). In fact, due to the sym- R()\)i—f (H drj)rﬁexp{i > > r?
metries mentioned, one can choosejftine origin n ) !

i
__ (r—r)2
R(\) =((AC=\1)qg). (18) X<exf{ 2 JZK Ci(rj =) D
Now, the average over the disorder can be performed with :'_f drlr2 A 2 E(r.
the help of the replica methd@4]. We recall first the Gauss- n H f7]foeXH 15 2 fi {j,lk_}[es (15.:10)-
ian integral[35] valid for a particularC realization, (24
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Here we use the dot over the equation sign to indicate that ¢(g)(x):q+pée—X{¢(g—1)(X)}f—1_ (31)
the limit n— 0 has to be taken. In EQ24) the productly;

runs over all the bondg ,k} of the Cayley tree; furthermore, Hered is the linear operator,

settingg=1—p we have defined

[
F(rj’rk)zq—kpexg{— E(rj_l’k)z .

o (™ K(y 921K
=2 (VAR
(32

In fact one can also extend the present model, by also allowyhere (- - -), denotes the average over the distribution

ing [26] the strength of each bond to be weighted accordingy (). For an infinite Cayley tree the recursion relations take

to the normalized coupling strength distributi@(«). In  the form of a single integral equation of the functigi(x)
this case the generalizéd(r;,r,) is =lim _¢@(x):
g~>oo

é—fwd D(w) [{—l 92
(25 O7 ), dnDlmexq— xd

F(rj,rk>zq+pjomdw<mexp{—i%(r,——roz] (26) $(0=a+pOe {40}’ *, (33

where
We now use the structure of the Cayley tree to perfornrthe L
integrations recursively in the generation numgef beads. . “ o x f
We do this by integrating, of generatiorg, while taking its R(V)=- Xfo dxe*{p(x)}". (34)
neighborr; of generationg—1 fixed [24].
For a tree of generatiog=1 with coordination number At this point we like to mention that treating hydrody-
f=23 one obtains in this way namic interactiongHI) in this formalism is fraught with
problems. As shown in previous wofl6,7] HI do indeed
1) ;i_ 2 N influence, in a marked way, the theoretical explanation of
RY(N)=— | drorg| expizry experimental observables. However, introducing the HI in
) the preaveraged approximation requires the determination of
A, the eigenvalues of the matrttA where the coefficientsl;;
fdrlF(ro,rl)exp 5T J

X of H have the form

—_

X

) 1- 4,

)
f dr,F(rg,rp)exp |§r§ Hiy= 6+ {— |
) ) <(ri_rj)2/|2>

(39

X

a
J drsF(ro,rs)exp |§r§ ) with £, being the reduced friction coefficient ahthe mean
] i square length of a bond. Now(ri—r;)%/1%)=(A"1);
i ) DRI —2(A*1)ij +(A*1)“ . which renders clear that th; enter
Eﬁf dfofo( eXF{I 510 >{¢(l)(fo)}3, (27)  HA in a complicated nonlinear form which does not allow a
treatment along the lines used above.
while in the general case of a tree of generatipwith co- If one letsf tend to infinity while keeping the average
ordination numbef one hag24] number Z=pf of links attached to a given bead _flxed, one
recovers the results for the random graph discussed in
A R Refs. [25,26. This is seen from EQq.(33) by setting
ex;{i EFZ ){fﬁ(g)(r)}f, (28 g(p)=2c+{p(—iNp?/2)—1}f so that Eq(33) takes in the
limit f—o the form
where ¢ (r) is determined recursively by

i
R(g)()\)iﬁj drr 2

9(P)=206_2°fcd,u D(,u)ex;{,i(az— Ea ”
0 2|/.L P p p

~ )\ R
¢(g)(f)=fdr’F(r,r’)(ex;{iEr’ ){(ﬁ(g—l)(r/)}f—l, .
(29 Xexr{;p” g(p)}, (36)
with ¢O(r)=1. which is identical with Eq(A3) of Ref. [26].

Then—0 limit is described in Appendix A and leads for Of special interest is the cad¥(u)=8(u—1), where®

a tree of generatiog to the equations is simply O=exp(—\xd), see Eq(32). It is possible now to
1 (e obtain recursivelyp(9(x) of the bond diluted Cayley tree of
RO(\)=— _f dxe {9 (x)}f (30) finite generatiory based on Eq(31). As shown in Appendix
Ao B one has then

and Oe*=exax/(1+\a)]. (37)

051106-4
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Indeed starting fromp(®)(x)=1 we obtain from Eqs(37)
and (31)

¢ (x)=qg+pexd —x/(1-\)]. (38)

This can be again inserted into EQ1) to obtain ¢?)(x).
lterating the procedure one obtaigd?(x) as a sum over
exponentials and, based on Eg0), it follows that R (\)

is a rational function oi. This procedure is, however, dif-
ficult to extend to largeg, since the number of terms in
»9(x) increases rapidly.

B. Moments of the density of eigenvalues

From Eq.(15) it is evident thatR(\) diverges only for

real, non-negative values. Hence in Cauchy’s integral for-

mula,

Rov= —— [ g RO

- 39
2miJc, N =\ (39

PHYSICAL REVIEW E 68, 051106 (2003

Inserting Eq.(45) in Eq. (33) one has the following for the
lowest order termpy(X):

Bo(X)=q+pe o)} 1. (46)

As shown in Appendix C this can be used to calculaje

1
Po=37 3l 0 {2 N0 +(T-D)a)’]. @7

Below p. we have¢y(0)=1 and from Eq.(47) it follows
that pg is

f
po=1=3p. (48)
On the other hand, abovg. Eq. (47) is still valid, but we
have to insert forgy(0) the solution of Eq(46) which at
x=0 tends to O fop—1.

As shown in Appendix C the inverse momedR§ can be

the closed patiC, may be taken to wrap around the positive determined along lines similar i@, leading to
real axis and extend over a circle at infinity. Given that the

integral over the circle does not contribute and making use of

Egs.(17) and(5) it follows that

R(x)z—%Jrfmd)\

One can now formally expand the denominator of @§) in
powers of\ obtaining

,P+(7\,)

N (40

RV =—224S ARy, (41)
N K=o
with
Rw:j:dxuu(xv<x3‘k‘¥ (42

-1 _
_Ku >MJ¢Mmd (9-¢)¢ 49

" 2p Jg (2—f)p+(f-1)q°

Different from po, to which only finite clusters contribute,
abovep, the infinite cluster contributes tBy; this is not
included in Eq.(49). On the other hand, Eq49) contains
also abovep,. the correct contribution of thénite clusters.

Performing the integration and settinfh(0)=1 we ob-
tain the following belowp, :

L f(f-1)
Ro=(u 1>MM
f q° q
X 2(f—1)p+p(f—2)|n1—(f—1)p_1' (50

If all the R, exist, Eq.(42) represents an asymptotic expan- Together with Eq(43) this implies thaty diverges logarith-
sion for R(\). Now, the R, have physical meanings. For mically at the percolation threshof= 1/(f —1). In the limit
example, by Eq(10), Ry is related to the intrinsic viscosity: f—oo with 2c=pf fixed Eq.(50) takes the form

1
ROZ_

.~ T
n=nkgT=Ry,
87270 4c

(43

(™, (51)

nl—2 |2
N 172c) <

while Ry, the second inverse moment, is related to the slopt?n this way we recover the result, EQ7) of Ref.[26], valid
of G'(w) atw=0 via for the random graph.

7_2

Ry=———
Y 4RKsT 9(w?)

G'(w)

w=0

(44) C. Integration for a special distribution

As shown in Ref[26], the analytical work simplifies con-

The contribution of the finite clusters to the sum in Eq_siderably for the following distribution of bond strengths:

(41) can be determined based on Eg4) by having ¢(x)

expressed as a power series\in D(p)= iexq— 1) (52)
2 1)
o

=D, Ak . 45 .
¢ kzo Hi(X) “9 since for it the operatoD, Eg.(32), takes the form
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1 T T T T i T T 1
0r 0
R 1t
< <
g 2t T 2t
> >
o Hie 3 K] 3k
P 4 |
_5 _5 W
i T~ Lt T 0T MR = e 5 4 3 -2 -1 0 1 2 3
log; oA log;p)

FIG. 1. The density of statgg\) in double-logarithmic scales. FIG. 2. Same as in Fig. 1 for tHa(u) distribution of Eq.(52).
Displayed are numerically determined spectra for hyperbranchedhe theoretical curves are based on Esd). Here f=3 andp
polymers forf=3 andp=0.45, which are compared to the theo- varies, beingp=0.3 (squares 0.4 (circles, 0.45 (diamondg, 0.5
retical results of Sec. IIIC based on E(4). The numerically (triangles, and 0.6(pentagonsfrom below. Forp=0.5 the results
determined spectra af® for u=1 (crossek and(ii) for u random, are obtained folN,,,, =500 (upwards pointing triangl@¢sand 4000
obeying Eq.(52) (diamond$. See text for details. (downwards pointing trianglésAll other data are foN,,,=500.

=[1+Ax3?]" L ¢(x):q+cxl’4ex;< —i \/%) (57)
(53

o) de ! /) p[ A 7
= —exp— exg — —X
0 M2 A—lp %

where c is still undetermined. In the limit—0, Eq. (57)
For instance, applying &)\ng(:é—l to both sides of Eq. does not fulfill the boundary condition at=2, since it os-

(33), one obtains the ordinary second-order differential equaCillates in undamped fashion. One can avoid this problem by
tion rotating the integration contour in E¢34):

B(X)+AxI5h(X)=q+pe X p(x)} L (54)

We expect, as noted in R¢R6], that the particular choice of
D(u), Eq.(52), does not change much the smalbehavior 1 (= , -

of p(\), given that in Eq.(52) the probability for small =—xJo dxexplig—e"x){p(x)}", (58
coupling strengthg: is exponentially small. This finding is

corroborated by Fig. 1, where we display the density of ~ N g . _

statesp(\) obtained from the direct diagonalization of ran- Where¢(x)=¢(e'"x) is obtained from the solutions of

dom matrices, as described in the following section. Figure 1 _ _ - , -

shows the results obtained for=1 and foru obeying Eq. B(x)+Ne” XL H(x)=q+pexp(—ex){p(x)} L.

(52); moreover it displays the theoretical result, obtained by (59
solving Eq.(54), as we proceed to do in the following. For ) ) )

large\ (as discussed in Appendix)Dne obtains analytically Under this transformation, one has the following from Eg.
that p(\) obeys (57) for largex:

fry -2
p(N)=fpr~%, (59 fﬁ(x):quce"/”“xl"‘ex;{—ie“’”z\/g- (60)

as is also evident from Fig. 1. Now, as discussed in Appendix
A, Eq. (54) has to be solved subject to the boundary Condi"l’herefore for—
tions '

1[ev= —X f
mm=—;L dx € X{(x)}

7/2< <0 and positive real it is possible

to obtain a solutiorﬁ(x) that fulfills the boundary condition

#(0)=1 and ¢()=q. (560  ¢(=)=q of Eq.(56).
We stop to note that the results for the density of states

Formally now, Eqs(34) and(17) would allow to determine obtained via Eq(58) and the solution of Eq(59) are inde-
p(\). However, we have to calculaf(\ +ie€) in the limit ~ pendent of the phasg. However, the numerical integration
e—+0. For largex the term containing the exponential in of Eq. (59) can be simplified considerably by letting de-
Eq. (54) can be neglected; inserting in the remaining formpend on\ and adjusting it. We found empirically that=

the expressiom+ cxPexp(c’x?) the constantsy, B, andc’ — \7/3 for\<1 andy= — /3 for A>>1 are good choices.
can be determined, leading to the following result valid for We are still faced with a nonlinear boundary value prob-
large x: lem. This problem can be solved numerically with the
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help of standard integration subroutines implemented irstructures, by varyingNn, and letting it be Npay
MATHEMATICA, as described in Appendix E. =200, 1000, and 4000. The so-obtained numerical results
The density of states determined in this way is displayedor log,,p(\) agree forp<0.45 within 5% for the whole
in Fig. 2 for various values op. Below the percolation range displayed in Fig. 2. Fg=0.5 and 0.6 we identified
thresholdp=p,, it is easy to obtairp(\) for quite small  for the same percentage value the range of the spectrum that
values of\. This changes abovp=p., where an infinite s unaffected by artifacts generated due to the cutoff condi-
cluster emerges; then, exemplarily, fo+= 0.6 we can obtain tion in the recursion algorithm; this region is given hy
p(\) for A=10"22 Here the\ values are too large to allow =10-22

the determination of the small behavior ofp(\) (see the For each bond of a random branched structure we chose a
discussion in Sec. ¥ bond strength. with distributionD () as given in Eq(52).
The connectivity matrixA;; with entries weighted by these
IV. NUMERICAL STUDIES bond strengthg. is by construction a real symmetric matrix.

We obtained the eigenvalues using a combination of the

As a support of the integra}l equation approach discuss‘ef1|ouseholder method and the tridiagonal QL algorithm for
above, we have performed independent numerical evalu iagonalizatior{ 36,37

tions; among these we have also determined the spectr
through numerical diagonalizations of sets of disordered hy
perbranched structures.

4 We have accumulated the eigenvalues of all structures
generated for a specific value of the bond probabifity
where eigenvalues stemming from a structure Whmono-
mers are weighted with a factor of|$/ to obtain the proper
A. Regular structures weights, as given by Eqg¢4) and (16). The results of this

First, we have checked numerically the consequences dirocedure were already shown in Figs. 1 and 2. In Fig. 2 the
Eq. (31) for finite regular structures of branching functional- corresponding curves fgr=0.5 andp=0.6 have been lim-
ity f and given generatiog. These structures represent theited to the range that remains unaffected within 5% by the
well known dendrimers. Now, the eigenvalue spectra of dencutoff at Ny,,,=500, i.e.,A>1/N,,. This can be seen by
drimers are known to high accuracy, based on exact relatiorgomparing the results found fd¥,,,=500 and 4000 foip
[1,10] derived using the high symmetry of the corresponding=0.5 shown in Fig. 2. Fop=0.5 the number of different
C matrix. Here we evaluated, fgg=1 andu=1, ¢(9) re- realizations used were>810” and 1.7 1C° for Nmax=500
cursively, as given in Eq31); we then analyzed the result- and 4000, respectively. Fv=0.3, 0.4, 0.45, 0.5, and 0.6
ing R, Eq. (30), in terms of the following sum of partial with N;,,=500 the total number of realizations used was

fractions: 1.1x10%, 5.0x 10, 8.3x10°, 8.5x 10", and 1.1x 10’, re-
spectively, while out of these the number of structures having
R(g)()\)zz j (61) exactly N=50 bonds turned out to be around %.80%, 2.6
T NN X107, 1.5x 107, 1.9x10°, and 1.6<10°, respectively.
given that for a single structure and=1 the density of V. DISCUSSION
statesp(\) is a sum ofs peaks, so that Eq41) turns into
Eq. (61). We have confirmed numerically fdr=3 andg As stressed in Sec. II, from the density of stai€s) one

=5 (using MATHEMATICA) that this decomposition indeed can evaluate various quantities of physical importance. \We
results from the giveiR® and leads to the known eigenval- obtainedo(\) both by a numerical treatment of the differen-

ues\; and multiplicitiesm; of the corresponding dendrimer. tial equation(S9) and also by a direct approach via the nu-
merical diagonalization of many realizations, as described in

Sec. IVB.
_ _ First we focus on the stretching of GGSs under external
To numerically calculate the eigenvalue spectra of randonfie|ds[5,6,26,38. Starting point is Eq(6). Choosing now the

branched polymers we have performed extensive numericalirection of the field along thg axis, F=Fe,, the stretching
diagonalizations. Here, we focused on structures Wit is given by

and explored the eigenvalue spectra for various values of the
bond probabilities.

B. Random branched structuresp<1l

We create our random structures along the procedure out- (Y (1)) =(ry(t)—ry(0))—Fpot/{
lined in Sec. Il by which hyperbranched structures of arbi- .
trary size may be generated. Due to limitations of computer - Ef d)\p+()\)w, (62)
memory and time needed for the subsequent diagonaliza- KJo A

tions, we restrict the number of bonds of every structure to a

maximum of N,,ax, i.€., we stop the procedure as soon as h h q | he disti i
N, bonds have been created. In general we Msg, W ere the average extends now also over the distinct realiza-

—500. Forp=0.3 and 0.4, in 1 attempts this limit was tions of the hyperbranched structures. In Fig. 3 we plot in

never reached. For the bond probabiliiy-0.45, the limit ~ double-logarithmic scales the dimensionless quarftity)
was reached in foout of 1 attempts. To check the reli- =(8Y)K/F against the dimensionless tine=t/ for vari-
ability of the so-obtained results we also sampled additionabus values op.
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log,, &Y (7)

-4 -3 -2 -1 01 2 3 4 5

log;o®

log,of

FIG. 3. The averaged dimensionless stretching,(E2), plotted - FJG' 5. Same as Fig. 4 for the dimensionless loss modulus
in double-logarithmic scales against the dimensionless time G'(@).
=t/7, see text for details. The results are obtained from the analytidency in Fig. 5. Moreover, the logarithm may be an artifact,
cal_ _a_nd numericap(\) data displayed in Fig. 2. The bond prob- que to the presence of large values in Eq.(55). In the
abilities arep=0.3, 0.4, and 0.45, from below. region between the small and largeregimes the behavior

of G'(w) and G"(w) is characteristic of the underlying

Quantities of special experimental importance are thestructures. Here we observe rather smooth curves. This is

storage moduluss’ and the loss modulu§”, which we  caused by the vast number of different hyperbranched struc-
evaluated with the help of Eq¢ll) and (12). We display  tures with bonds of different strengths, which all contribute
both the moduli and the angular frequensyin dimension-  to G’(w) and G”(w), and differs from the cases of single
less units b= w/T, G’ =G’'/nkgT, and é”=G”/ﬁkBT) in dendrimers or of hyperbranched structures with a fixed num-
double-logarithmic scales in Figs. 4 and 5. Classically ander of monomer$7]. In these cases one recognizes at inter-
independent of the considered structure, for very small Mmediatew in the behavior ofG’'(w) and G"(w) the signa-
valuesG'(w) increases quadratically i@, whereasG"(w)  ture of the underlying structures; thus in R€ffS,6] doubly
shows aw dependence. For very large on the other hand, logarithmic displays oG’ (w) andG”(w), such as in Figs. 4
G'(w) reaches a plateau, which following E¢8) should be ~ and 5, disclosed for dendrimers a logarithmic-type behavior,
nksTpf/2, whereass” (w) decays as» L. The smallw be- which IS related to thgw exponential growth wigh .
havior, especially in the case &' (w), is not attained, see In Flgs._3—5 t_he d'ﬁ?ref?ces between the f_:lnalytlcal and
Fig. 5. In all cases the prefactors are dominated by sma he numerical dlagonallzatl_on_ results are quite small and
eigenvalues, being related to the inverse momenis, ¢i) e,nce hardly 9bservable; this is due to the fact (m(t»’.
via Egs.(44) and(43). One may naively expect, based on Eq. G (@), andG"(w) do not test the small range in detail.
(55), that G"(w) should vanish likew !N in the high V& Now turn to discuss aspects for which the smalnge
frequency limit. We do not detect such a logarithmic depeniS important. In the random graph case heuristic arguments

have been givefi25,2§ for the existence of a Lifschitz tail
in the density of states. One expects the form

p+(>\)~exp{—M

16
logso[—Inp (V)]

1.4

1.2

R 7 % 5
4 -3 -2-1 0 1 2 3 4 5 08 \
log;o®

0.6

, A—0, (63

~

|°9106'((D)

FIG. 4. The dimensionless storage modulsis») plotted in
double-logarithmic scales against the dimensionless frequency FIG. 6. Results for the Lifshitz tail op(\) for different p,
=wl/ 7, see text for details. The results are obtained from the anaebtained from integrating Eq59) (dot9. The results are compared
lytical and numericap(\) data displayed in Fig. 2. The bond prob- with Eq. (63) (straight line$ for a fittedA, value,A,=3.375. Here
abilities arep=0.3, 0.4, and 0.45, from below. p=0.4, 0.45, 0.475, 0.4875, and 0.493 75 from left to right.
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whereA(p) ~Aq(p—pc)¥? for p—p.. This behavior stems low lying eigenfrequencies, which are mainly due to struc-
from the fact that small eigenvalues are produced by largéures displaying large quasilinear regions or having very
linear regions occurring with small probability. I ap- weak bonds. Such situations are rare and therefore difficult
proachesp, the probability of these large linear structuresto monitor in an approach based on direct numerical diago-
increases, resulting in a finite density of statesXer0 at  nalization. On the other hand, the analytic approach could
pc. In Fig. 6 we plotted logf —In p(\)] obtained from the reflect them; it allowed us, for instance, to treat the question
integration of Eq.(59) against logoA in comparison with  of the appearance of Lifschitz tails in the density of states.
form (63) for values ofp(\) down to 10 '° and p values

close to but smaller thap,=1/2. The agreement between ACKNOWLEDGMENTS

the analytical results and E¢63) is nice, when we take for
A, the valueA,=3.375. Note that in our direct diagonaliza- 1 he support of the DFG, of the BMBF, and of the Fonds

tion calculations we did not reach the smalfange explored der Chemischen Industrie are gratefully acknowledged.
here by the analytic approach: For instance we did not ob-
tain, say forp=0.45, eigenvalues lower thar=10"*, see APPENDIX A: DETAILS OF THE n—0 LIMIT

Fig. 1. The n—0 limit is performed as shown in Ref26], by

_ Above the percolation thresholp=1/2 large linear re- ing the integral representation of thedimensional La-
gions become rare again, since then the structures get mogg, o

branches. Unfortunately, we are not able to reach the small

regime abovep, (see, for instance, our Fig. 2 for the case i
p=0.6), where a behavior such as E§3) could again be f dr’ exp{—i E(r—f')z}f(|f'|)
observed.

Inserting Eq.(63) into Eq. (62) we obtain the following, =27liw)"?
analogously to Ref.38], for larget: N1

2
F A(p)|1—exp —\t/7) Xex‘{zm - ap) fP)p=irt (AD
(5Y(t)>~Rf dx exp — - .
W 64 which is valid for rotationally invariant function§(|r|).

From the structure of Eq$26) and (29) it follows itera-

The integral may be evaluated through a saddle-point apively that ¢@(r) depends only om=|r|. Therefore given
proximation, giving the relation

F 2 . 3A 2/3 t 1/3
v~ legsenen | %57 ]

27Tn/2 o
H — I n-1 —
)' ,!'Lnof drf(r) r![nor(nlz)fodrr f(r)=£(0),

(65) (A2)

wherec;, is a constant. Due to the dependencé\¢p) onp  valid for any rotationally invariant functiori(r), one has
it follows that(8Y(t)) is quite sensitive t@ nearp,=1/2.  from Eq.(28) for n—0

oc ALl
VI. CONCLUSIONS R(g)()\)=if drrexp{izrz {p@()}.  (A3)
0

This work was devoted to the dynamics of randomly hy-
perbranched polymers in the framework of a Rouse-type apon the other hand, one has the following from E@51),
proach. In such an approach, the fundamental quantity fofA2), and(29):
the dynamics is the density of states, see KE)s.(11), and
(12) as well as Refs|[5,6,26. In former works on general
hyperbranched polymers the ensemble averaged density of
states had been computed using numerical diagonalization

39(r)=q 9 D(0)+p f:dn D(u)

techniqueq7,23]. In parallel to these techniques, we used Xex;{— g2 }(9 ) ex;{i Erz}

here the replica method to evaluate the ensemble average i\ o’ 2

over disordered structures; we obtained in this way an inte- ~

gral equation for the density of statpg\). The results of x{p@ ()L (A4)

the two approaches are in convincing agreement for a large R
range of \. From the data ofp(\) various quantities of Introducing the function ¢(X)=¢(r[x]) with r[x]
physical interest, i.e., the stretching and the storage and loss \2ix/\ and using the relation
moduli G’ andG”, could be numerically evaluated. L
Besides the intrinsic interest of having an analytic 2 . 2
method, the main advantage of the replica approach appears )‘X&Xf(r[x])z'<§‘9r B Eaf) F(rixD) (A5)
if one focuses on the long-time dynamics of structures close
to the percolation threshold. This regime is governed by verjor an arbitrary functiorf(r) we obtain Eqs(30) and (31).
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From ¢(©(0)=1 and Egs(31) and(32) we conclude that Eq. (46) to determinepo(0). Tocope with this, we note that
#9(0)=1 is valid for all generationg regardless of the from Eq.(46) one has the following expansion in powers of
value ofq. Hence it is also valid for the whole Cayley tree. pg'~2e™*:

In the same fashion the proper#t9(<)=q follows from B
Eqg. (A4) for all A with a small positive imaginary part. We _ _ oy
st%p to note that we have just%btained thg bouyngary condi- e X{ﬁbo(x)}f:qszl ap gl Di=2emkx (Cy)
tions, Eq.(56) of the main text.
Inserting this into Eq(47) we obtain
APPENDIX B: PROOF OF THE PROPERTY, EQ. (37)

1
To establish Eq(37) we note that the functions po=qfk21 Eakp"* 1qtk=D(=2), (C4)
© k-1
v0=3 @ K (81)  On the other hand, one obtains from E45)
AT K (k= 1)1
o1
. =S Wy, C5
fulfil Po ls% g Wis (C5)
2 _
Xy ha(X) = atho(X), (B2) where W|g=2Xgs-|gWs is the probability that a monomer

belongs to a cluster dfS| monomers. Finally from the ob-
servation thatW|g contains the factop/SI~1q/S(f=2+2 the
identification

i.e., are eigenfunctions of the operamﬁ to the eigenvalue
a. It is straightforward to verify the relation

o0

o 1
f day,(x)e ¥a=> gkxk=e®*—1 (B3
0 =1 k!

akpk_lqk(f_2)+2:Wk (CG)

follows. A statement similar to Eq$C3) and(C6) was given
via term by term integration. This can be used to determind? Ref. [39]. Thus the total probability that a monomer is

the action of ex[)—)\xﬁi] on e?x: contained in a finite-cluster is given IQ;()()(O_)}»f and one has

to choose the solution of E¢46) that is unity forx=0 and

* P<Pc.
ex — Axd%]e**=exyf —\xdz] 1+j dalﬁa(x)e_“/a> As an illustration of these findings we consider the case
0 f=3, where the solution of Eq46) with the desired prop-
—14 fxdae—kawa(x)e—ala:ex/()\-*—lla), erties Is
0 ex
B4) $o(x)= 55 (1= 1-4pge™). (€7

where in the last step we used again E83). Rearranging This gives indeedpy(0)=1 for p<p.=1/2. On the other
the right-hand side of EqB4) results in Eq(37) of the main  hand, one hasp,(0)=1/p—1, which in view of Eq.(C3)
text. reflects the fact that above the percolation threshold we have
the finite probability + (1/p—1)® that a monomer is con-
APPENDIX C: LOW FREQUENCY EXPANSION tained in the infinite cluster.

From Eqgs.(34) and(45) we remark thaR, can be calcu-
lated based on the knowledge #§(x) and¢4(x). Inserting
Eq. (45) into Eq.(33) we obtain from the linear term in

f
¢6=—pex(2_f)¢¢+0(f—1)q’ (CY) Pe by "= —xbobi(n ) - (C8)
0

The quantityp, is entirely determined by(x), see Egs.
(34), (41), and(45). We now make use of the relation

This relation allows now to determirfe,:
where the prime denotes the derivative with respeck.to
Equation(C1) follows by differentiating and rearranging Eq. = =fjwdx X1
(46). From Eq.(C1) we obtain for the weight of the zero 0 0 o "1

eigenvalue ) e
_ M M * I M M * 2
= —p fo dx Xéobo 2p J;) dx(¢o)

foo —x 4 f 1= ’
po= | dxe ¢o=—5fo dx ¢4l (2— ) o+ (F~ 1),

(™, (= (o—d) o
(C2 — “ ,
2p fodx(Z—f>¢o+<f—1>q¢°’ €9

from which Eq.(47) follows by performing the integration.
To evaluate Eq(47) one has to choose a specific solution of from which Eq.(49) follows.
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APPENDIX D: LARGE A BEHAVIOR of MATHEMATICA with the initial values¢(«©)=q, ¢’ ()
=0. This leads to a solutiog;(x) which differs from 1 at
x=0. Therefore we have to add a second solutify{x)
= ¢(X) — ¢i(X), obeying the equation

To obtain the largex behavior ofp(\), we make the
substitutione(x) — ¢(x/N\); Eq. (54) takes then in the limit
N—oo the form

b3+ XBL (0 =0, DY) $n(X)+\e” X n(x) = p expl( — ') {24;(x)
+ én(X)} (), (ED)

which is complemented with the boundary conditions

Introducing the functiorkK(x) via

bo.(x)=q+2pixKy(2iVx), (D2)

Eq. (D2) turns into Bessel's differential equation ft; (X), #én(0)=1-¢;(0) and ¢,(>)=0.
Eq. (8.499 of Ref.[40]:

(E2)

The solution to Eq(E1) is obtained recursively. In the first
step we linearize EqE1) by neglecting the term quadratic in
K,(x)=0. (D3 dn(x). To obtain¢ﬁ(x) of the kth recursion step we linear-
ize Eqg.(E1) by inserting the solutiomﬁﬁ’l(x) of the last step
in the curly brackets of the right-hand side, which leads to
the iteration scheme

) 1 1
(9XK1(X)+_(9XK1(X)_ 1+_
X X2
Then taking into account the boundary conditions, &&),
K1(x) can be identified with the modified Bessel function of
the first kind. Using the smabk expansion ofK(x), Eg. Kix) 4+ ne 1% a2 (x) = b exnl — e ) {2 b (x
(8.446 of Ref.[40], we obtain #h(x) xPh(x)=Pp expl H24i()
+éi ((0}eR0).  (EY)

These linear equations are integrated with the initial values

Im{..(x)}' = mfpx+0(x?), (D4)
and inserting this into the expression

11 (= o (Xm)=h V' (Xm) and of(Xm) =0,  (E4)
p()\)=——|mf dxe X{p(xIN)} (D5)

A 0 wherex,, is a large number, adjusted to maximize numerical
precision. After each iteration step the solutif(x) is nor-
malized according to the first of the conditions, Hg2), i.e.,

APPENDIX E: SOLUTION OF THE NONLINEAR $1(0)=1-;(0). Note that it is important to integrate Eg.
BOUNDARY VALUE PROBLEM (C8) from x== to x=0, since othe_:rW|se rOL_mdlng errors
would always produce an exponentially growing solution. It
We restrict the discussion here to the cése3, since the turns out that within this procedure the solution converges
generalization to arbitrary values dis straightforward. To rapidly after a few iteration steps. Especially foc1, the
solve the nonlinear boundary value problem given by Egsolution is obtained with sufficient accuracy after the first
(59) we first integrate Eq59) using the subroutine NDSolve iteration step, ifp lies below the percolation threshold.

for the density of states, we obtain E§5).
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