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Dynamics of randomly branched polymers: Configuration averages and solvable models

F. Jasch, Ch. von Ferber, and A. Blumen
Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

~Received 9 June 2003; published 25 November 2003!

Treating the relaxation dynamics of an ensemble of random hyperbranched macromolecules in dilute solu-
tion represents a challenge even in the framework of Rouse-type approaches, which focus on generalized
Gaussian structures~GGSs!. The problem is that one has to average over a large class of realizations of
molecular structures, and that each molecule undergoes its own dynamics. We show that a replica formalism
allows to develop analytically, based on an integral equation, a systematic way to determine the ensemble
averaged eigenvalue spectrum. Interestingly, for a specific probability distribution of the spring strengths of the
GGSs, the integral equation takes a particularly simple form. Given that several dynamical observables, such
as the mechanical moduliG8(v) and G9(v), as well as the averaged monomer displacement^Y(t)& are
relatively simple functions of the eigenvalues, we can use the obtained spectra to compute the corresponding
averaged dynamical forms. Comparing the results obtained from this approach and from extensive diagonal-
izations of hyperbranched GGSs we find a very good agreement.

DOI: 10.1103/PhysRevE.68.051106 PACS number~s!: 46.65.1g, 82.70.Gg, 64.60.Ht, 83.80.Rs
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I. INTRODUCTION

Randomly branched polymers and in particular their d
namic behavior have recently attracted much interest. On
theoretical side, this is due to the treelike structure of s
polymers, which simplifies their treatment compared to co
plex networks, and to the quest for understanding the
namical observables of such random networks@1–10#. On
the experimental side, methods have been developed to
thesize large~regular as well as irregular! branched poly-
meric structures, i.e., dendrimers and their hyperbranc
analoga@11–22#.

While theoretical work on the dynamics of regul
branched dendrimers has made use of the high symmet
these molecules to extract~as far as possible in closed form!
expressions for their eigenvalue spectra@10,23#, for general
hyperbranched polymers the corresponding spectra h
been so far evaluated only using simulation and numer
diagonalization techniques@7#. In such approaches large e
sembles of branched structures are generated; then the e
frequency spectra of the structures are determined, f
which then averaged dynamical observables are calcula
We note that at long times the relaxation is dominated by
lowest eigenfrequencies of all contributing structures; th
eigenfrequencies belong, as a rule, to the most elong
structures in the ensemble, structures which are rare.
dently, in an ensemble built by simulating a finite number
elements, the statistics of rare events prevents one from
taining accurately the very low part of the spectrum. Hen
the limiting long-time behavior of the dynamical relaxatio
forms cannot be obtained in this way.

In this work we focus on another approach, based on
analytical ideas of Kim and Harris@24# and of Bray and
Rodgers@25#. Extending the analysis of gel dynamics b
Broderix et al. @26# we obtain an integral equation for th
eigenfrequencies of hyperbranched structures.
1063-651X/2003/68~5!/051106~12!/$20.00 68 0511
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II. MODEL

A. The structures

Each representative of the ensemble of random
branched structures is constructed from a single monome
which one tries to attach with probabilityp a bond that ends
at a new monomer. This attempt to add a bond is repeatf
times, so that the number of bonds added to the star
monomer obeys a binomial distribution wheref is the maxi-
mum number of possible bonds added to one monomer
the next step the procedure of trying to add a bond endin
a new monomer is repeatedf 21 times with each monome
created in each step. Proceeding iteratively in the same
with the monomers created in the last step, we obtain a
domly branched loopless structure. The process of add
bonds ends if no bonds are added in a given step. This e
occurs with probability 1 below the percolation thresho
pc51/( f 21) @27–29#, but for p.pc there is a finite prob-
ability that the process never stops and an infinite structur
created.

B. Dynamics

In this section we recall the evaluation of the dynamic
properties of polymers in the framework of generaliz
Gaussian structures~GGSs! @30#, an extension of the Rous
model@31#. GGSs are obtained by viewing the vertices of t
structure as beads and the branches as entropic harm
springs. The beads are then treated as Brownian part
characterized by their time dependent positionsr̂ i(t). The
potential due to the harmonic springs with elastic constanK
is

U~$ r̂ i%!5
K

2 (
i , j

Ci j ~ r̂ i2 r̂ j !
25

K

2 (
i , j

Ai j r̂ i r̂ j . ~1!

In a classical picture@30–33# the symmetric matrixCÄ(Ci j )
indicates the connections: the off-diagonal elementsCik are
©2003 The American Physical Society06-1
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either 1 if i and j are connected or 0 otherwise, and t
diagonal elementsCii are zero. Furthermore, the positiv
semidefinite Laplace operatorAÄ(Aik) of the structure is
given by

Aik5S d ik(
j 51

N

CjkD 2Cik . ~2!

Later, in order to obtain a solvable equation for the eigen
quencies we will also generalize the potential given by E
~1! by letting the strength of the springs’ constants vary o
the lattice. Formally we will allow the nonzero values ofCik
to vary by picking them independently of each other from
probability density distributionD(x), in the spirit of
quenched disorder.

We consider purely relaxational dynamics in the prese
of an external space and time dependent fieldF( r̂ ,t). Thus
the time dependence of the bead positionsr̂ i(t) is given by
the Langevin equation

z
] r̂ i~ t !

]t
52K(

j 51

N

Ai j r̂ j1F~ r̂ i ,t !1f i~ t !, ~3!

wheref i(t) denote random forces with zero mean and sa

fying ^f i
T(t8)f j (t)&52kBTzd i j d(t2t8)1, wherez is the fric-

tion coefficient andT is the temperature. Equation~3! is the
direct GGS generalization of the classical Rouse equation
linear polymers to networks@5,30,32#.

From Eq.~3! various quantities can be calculated, whi
involve for a certain structureSonly the density of eigenval
uesrS(l) of the corresponding Laplace matrixAS. Now, the
ensemble averaged density of eigenvalues is given by

r~l!5^rS~l!&[(
S

wSrS~l!, ~4!

where the sum extends over all structuresS, eachrS(l) is
normalized, andwS denotes the probability that the structu
S is created in the iterative growth procedure.

Now eachS created in this way is connected, so thatAS

has only one zero eigenvalue, whose corresponding ei
vector is homogeneous. Therefore it is convenient to split
the resultingd peak of r(l) at l50 with weight r0 by
writing

r~l!5r0d~l!1r1~l!. ~5!

If we consider the forceF( r̂ j ,t)5d i j Q(t)F acting only
on beadi and switched on att50, we obtain for the mean
bead displacement at timet, averaged over the fluctuatin
forces, all beads and the ensemble of structures, see Ref@5#:

r̂ ~ t !2 r̂ ~0!5F
r0t

z
1F

1

KE0

`

dlr1~l!
12exp~2lt/t!

l
,

~6!
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where we sett5z/K. We are also interested in the she
stresssxy which is obtained by having the force fieldF( r̂ ,t)
being proportional to a velocity field, which increases li
early in they direction:

Fa~ r̂ ,t !5zva~ r̂ ,t !5zdaxk~ t !r y . ~7!

In this casesxy is determined by the linear response relati
@32#

sxy5E
2`

t

dt8Ḡ~ t2t8!k~ t !, ~8!

where the ensemble averaged shear relaxation modulusḠ(t)
is given by

Ḡ~ t !5n̂kBTE
0

`

dlr1~l!exp~22lt/t!, ~9!

and n̂[N/V denotes the number of monomers per unit v
ume. Fork(t)5k, independent oft, the intrinsic viscosity
h5sxy /k reads

h5n̂kBT
t

2E0

`

dl
r1~l!

l
, ~10!

being again a function ofr1(l). The same holds when th
external field is oscillatory, say by havingk(t)5k0eivt; this
leads to the storage modulusG8(v):

G8~v!5ReS sxy~ t !ive2 ivt

k0
D

5n̂kBTE
0

`

dlr1~l!
v2

~2l/t!21v2
, ~11!

and to the loss modulusG9(v):

G9~v!5ImS sxy~ t !iveivt

k0
D

5n̂kBTE
0

`

dlr1~l!
2lv/t

~2l/t!21v2
. ~12!

III. ANALYTIC TREATMENT VIA AN INTEGRAL
EQUATION

A. Derivation of an integral equation for the density of states

We now turn to the derivation of an integral equation f
the density of states, and follow the ideas developed by K
and Harris@24# to treat random hopping over a Cayley tre

We note that the construction of Sec. II A is not changed
we place the monomers from which our structures are b
on the nodes of anf-functional Cayley tree and fill in the
bonds, with probabilityp, in the order of increasing chemica
distance from the starting monomer 0 at the origin. On
other hand, we may draw the bonds in arbitrary order, giv
that their probabilities of appearing are independent. The
6-2
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fore wS defined in Sec. II A is the same as the probability
finding the origin to belong to anS cluster in the bond di-
luted Cayley tree. Due to the symmetry of the Cayley t
this probability is also independent of the choice of any p
ticular monomer as being the origin.

We consider now in the diluted Cayley tree picture fo
particular monomerj the diagonal elementRj j (l)5R(l) of
the resolventR(l)5^(AC2l1)21&, averaged over all bond
distributions:

R~l!5^~AC2l1! j j
21&. ~13!

A particular realizationC of the Cayley tree for a certain
placement of bonds is formed by disjoint clusters of bead
cluster being a set of beads connected to each othe
bonds. Because of this theAC corresponding toC can be
written in block diagonal form, with block matrices given b
the AS of the corresponding clusters. One has therefore

~AC2l1! j j
215~AS2l1! j j

21 , ~14!

where S consists only of the monomers belonging to t
cluster ofj. Furthermore, the probabilitieswk,S that a certain
monomer is at a certain positionk of S do not depend onk;
one has thuswk,S5wS /uSu, whereuSu denotes the number o
monomers insideS. This leads to

R~l!5(
S

(
k51

uSu

wk,S~AS2l1!kk
21

5(
S

wS

1

uSu (
k51

uSu

~AS2l1!kk
21 . ~15!

Using the relation

rS~l!5 lim
e→0

1

p

1

uSu
Im(

k51

uSu

@AS2~l1 i e!1#kk
21 ~16!

for the normalized density of states of theS cluster, we ob-
tain from Eq.~4!

r~l!5 lim
e→0

1

p
ImR~l1 i e!, ~17!

with R(l) being given by Eq.~13!. In fact, due to the sym-
metries mentioned, one can choose forj the origin

R~l!5^~AC2l1!00
21&. ~18!

Now, the average over the disorder can be performed w
the help of the replica method@34#. We recall first the Gauss
ian integral@35# valid for a particularC realization,
05110
f

e
r-

a
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expF i

2
~AC2l1!00

21J2G
5FDet

i ~AC2l1!

2p G1/2E S)
j

dxj D
3expF2

i

2 S (
j ,k

Ajk
C xjxk2l(

j
xj

2D 1 iJx0G ,
~19!

wherel contains implicitly a small, positive imaginary pa
which ensures the convergence. One now introduces
n-dimensional vectorJ5(J(1),J(2), . . . ,J(n)) and focuses on

Z~J![expF i

2
~AC2l1!00

21J2G . ~20!

Using Eq.~19! Z(J) can be written as a Gaussian integr
over then-dimensional vectorsr i5(xi

(1) ,xi
(2) , . . . ,xi

(n)):

Z~J!5FDet
i ~AC2l1!

2p Gn/2E S)
j

dr j D
3expF2

i

2 S (
j ,k

Ajk
C r j r k2l(

j
r j

2D 1 iJ"r0G .
~21!

In the spirit of the replica method, Eq.~18! can be expressed
in terms ofZ(J) of Eq. ~20! as

R~l!5K 2 i

n (
a51

n S ]

]J(a)D 2

Z~J!U
J50

L , ~22!

where the average goes over all bond placements over
Cayley tree. Introducing Eq.~21! into Eq. ~22! results in

R~l!5K FDet
i ~AC2l1!

2p Gn/2 i

nE S)
j

dr j D r0
2

3expF2
i

2 S (
j ,k

Ajk
C r j r k2l(

j
r j

2D G L . ~23!

The averaging procedure in this equation is considera
simplified by taking the limitn→0, since then the (n/2)th
power of the determinant gives simply a factor 1.

Using Eq.~1! and the fact that the filling of bonds with
probability p occurs independently leads to

R~l!8
i

nE S)
j

dr j D r0
2expF i

l

2 (
j

r j
2G

3K expF2
i

2 (
j ,k

Cjk~r j2r k!
2G L

8
i

nE S)
j

dr j D r0
2expF i

l

2 (
j

r j
2G )

$ j ,k%eB
F~r j ,r k!.

~24!
6-3
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Here we use the dot over the equation sign to indicate
the limit n→0 has to be taken. In Eq.~24! the productP$ j ,k%
runs over all the bonds$ j ,k% of the Cayley tree; furthermore
settingq512p we have defined

F~r j ,r k![q1p expF2
i

2
~r j2r k!

2G . ~25!

In fact one can also extend the present model, by also all
ing @26# the strength of each bond to be weighted accord
to the normalized coupling strength distributionD(m). In
this case the generalizedF(r j ,r k) is

F~r j ,r k![q1pE
0

`

dmD~m!expF2 i
m

2
~r j2r k!

2G . ~26!

We now use the structure of the Cayley tree to perform thr k
integrations recursively in the generation numberg of beads.
We do this by integratingr k of generationg, while taking its
neighborr j of generationg21 fixed @24#.

For a tree of generationg51 with coordination number
f 53 one obtains in this way

R(1)~l!8
i

nE dr0r0
2S expF i

l

2
r0

2G D
3S E dr1F~r0 ,r1!expF i

l

2
r1

2G D
3S E dr2F~r0 ,r2!expF i

l

2
r2

2G D
3S E dr3F~r0 ,r3!expF i

l

2
r3

2G D
[̇

i

nE dr0r0
2S expF i

l

2
r0

2G D $f̂ (1)~r0!%3, ~27!

while in the general case of a tree of generationg with co-
ordination numberf one has@24#

R(g)~l!8
i

nE drr 2S expF i
l

2
r2G D $f̂ (g)~r !% f , ~28!

wheref̂ (g)(r ) is determined recursively by

f̂ (g)~r !5E dr 8F~r ,r 8!S expF i
l

2
r 8G D $f̂ (g21)~r 8!% f 21,

~29!

with f̂ (0)(r )[1.
The n→0 limit is described in Appendix A and leads fo

a tree of generationg to the equations

R(g)~l!52
1

lE0

`

dxe2x$f (g)~x!% f ~30!

and
05110
at

-
g

f (g)~x!5q1pÔe2x$f (g21)~x!% f 21. ~31!

HereÔ is the linear operator,

Ô5E
0

`

dm D~m!expF2
l

m
x]x

2G5 (
k50

`
^m2k&m

k!
~2l!k~x]x

2!k,

~32!

where ^•••&m denotes the average over the distributi
D(m). For an infinite Cayley tree the recursion relations ta
the form of a single integral equation of the functionf(x)
[ lim

g→`
f (g)(x):

f~x!5q1pÔe2x$f~x!% f 21, ~33!

where

R~l!52
1

lE0

`

dxe2x$f~x!% f . ~34!

At this point we like to mention that treating hydrody
namic interactions~HI! in this formalism is fraught with
problems. As shown in previous work@6,7# HI do indeed
influence, in a marked way, the theoretical explanation
experimental observables. However, introducing the HI
the preaveraged approximation requires the determinatio
the eigenvalues of the matrixHA where the coefficientsHi j
of H have the form

Hi j 5d i j 1z r

12d i j

A^~ r̂ i2 r̂ j !
2/ l 2&

, ~35!

with z r being the reduced friction coefficient andl the mean
square length of a bond. Noŵ( r̂ i2 r̂ j )

2/ l 2&5(A21) i i
22(A21) i j 1(A21) j j , which renders clear that theAi j enter
HA in a complicated nonlinear form which does not allow
treatment along the lines used above.

If one lets f tend to infinity while keeping the averag
number 2c5p f of links attached to a given bead fixed, on
recovers the results for the random graph discussed
Refs. @25,26#. This is seen from Eq.~33! by setting
g(r)[2c1$f(2 ilr2/2)21% f so that Eq.~33! takes in the
limit f→` the form

g~r!52ce22cE
0

`

dm D~m!expF 1

2im S ]r
22

1

r
]rD G

3expF il

2
r21g~r!G , ~36!

which is identical with Eq.~A3! of Ref. @26#.
Of special interest is the caseD(m)5d(m21), whereÔ

is simply Ô5exp(2lx]x
2), see Eq.~32!. It is possible now to

obtain recursivelyf (g)(x) of the bond diluted Cayley tree o
finite generationg based on Eq.~31!. As shown in Appendix
B one has then

Ôeax5exp@ax/~11la!#. ~37!
6-4
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Indeed starting fromf (0)(x)51 we obtain from Eqs.~37!
and ~31!

f (1)~x!5q1p exp@2x/~12l!#. ~38!

This can be again inserted into Eq.~31! to obtainf (2)(x).
Iterating the procedure one obtainsf (g)(x) as a sum over
exponentials and, based on Eq.~30!, it follows that R(g)(l)
is a rational function ofl. This procedure is, however, dif
ficult to extend to largeg, since the number of terms i
f (g)(x) increases rapidly.

B. Moments of the density of eigenvalues

From Eq. ~15! it is evident thatR(l) diverges only for
real, non-negative values. Hence in Cauchy’s integral
mula,

R~l!5
1

2p i ECl

dl8
R~l8!

l82l
, ~39!

the closed pathCl may be taken to wrap around the positi
real axis and extend over a circle at infinity. Given that t
integral over the circle does not contribute and making us
Eqs.~17! and ~5! it follows that

R~l!52
r0

l
1E

01

`

dl8
r1~l8!

l82l
. ~40!

One can now formally expand the denominator of Eq.~40! in
powers ofl obtaining

R~l!52
r0

l
1 (

k50

`

lkRk , ~41!

with

Rk5E
0

`

dl8r1~l8!~l8!2k21. ~42!

If all the Rk exist, Eq.~42! represents an asymptotic expa
sion for R(l). Now, the Rk have physical meanings. Fo
example, by Eq.~10!, R0 is related to the intrinsic viscosity

h5n̂kBT
t

2
R0 , ~43!

while R1, the second inverse moment, is related to the sl
of G8(v) at v50 via

R15
t2

4n̂kBT

]

]~v2!
G8~v!U

v50

. ~44!

The contribution of the finite clusters to the sum in E
~41! can be determined based on Eq.~34! by havingf(x)
expressed as a power series inl:

f~x!5 (
k50

`

lkfk~x!. ~45!
05110
r-

e
of

e
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Inserting Eq.~45! in Eq. ~33! one has the following for the
lowest order termf0(x):

f0~x!5q1pe2x$f0~x!% f 21. ~46!

As shown in Appendix C this can be used to calculater0:

r05
1

2~ f 22!p
@q22$~22 f !f0~0!1~ f 21!q%2#. ~47!

Below pc we havef0(0)51 and from Eq.~47! it follows
that r0 is

r0512
f

2
p. ~48!

On the other hand, abovepc Eq. ~47! is still valid, but we
have to insert forf0(0) the solution of Eq.~46! which at
x50 tends to 0 forp→1.

As shown in Appendix C the inverse momentR0 can be
determined along lines similar tor0, leading to

R05
f ^m21&m

2p E
q

f0(0)

df
~q2f!f

~22 f !f1~ f 21!q
. ~49!

Different from r0, to which only finite clusters contribute
abovepc the infinite cluster contributes toR0; this is not
included in Eq.~49!. On the other hand, Eq.~49! contains
also abovepc the correct contribution of thefinite clusters.

Performing the integration and settingf0(0)51 we ob-
tain the following belowpc :

R05^m21&m

f ~ f 21!

2~ f 22!2

3F f

2~ f 21!
p1

q2

p~ f 22!
ln

q

12~ f 21!p
21G . ~50!

Together with Eq.~43! this implies thath diverges logarith-
mically at the percolation thresholdp51/( f 21). In the limit
f→` with 2c5p f fixed Eq.~50! takes the form

R05
1

4c F lnS 1

122cD22cG^m21&m . ~51!

In this way we recover the result, Eq.~37! of Ref. @26#, valid
for the random graph.

C. Integration for a special distribution

As shown in Ref.@26#, the analytical work simplifies con
siderably for the following distribution of bond strengths:

D~m!5
1

m2
exp~21/m!, ~52!

since for it the operatorÔ, Eq. ~32!, takes the form
6-5
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JASCH, von FERBER, AND BLUMEN PHYSICAL REVIEW E68, 051106 ~2003!
Ô5E
0

`

dm
1

m2
exp~21/m!expF2

l

m
x]x

2G5@11lx]x
2#21.

~53!

For instance, applying 11lx]x
25Ô21 to both sides of Eq.

~33!, one obtains the ordinary second-order differential eq
tion

f~x!1lx]x
2f~x!5q1pe2x$f~x!% f 21. ~54!

We expect, as noted in Ref.@26#, that the particular choice o
D(m), Eq. ~52!, does not change much the smalll behavior
of r(l), given that in Eq.~52! the probability for small
coupling strengthsm is exponentially small. This finding is
corroborated by Fig. 1, where we display the density
statesr(l) obtained from the direct diagonalization of ra
dom matrices, as described in the following section. Figur
shows the results obtained form51 and form obeying Eq.
~52!; moreover it displays the theoretical result, obtained
solving Eq.~54!, as we proceed to do in the following. Fo
largel ~as discussed in Appendix D! one obtains analytically
that r(l) obeys

r~l!. f pl22, ~55!

as is also evident from Fig. 1. Now, as discussed in Appen
A, Eq. ~54! has to be solved subject to the boundary con
tions

f~0!51 and f~`!5q. ~56!

Formally now, Eqs.~34! and ~17! would allow to determine
r(l). However, we have to calculateR(l1 i e) in the limit
e→10. For largex the term containing the exponential
Eq. ~54! can be neglected; inserting in the remaining fo
the expressionq1cxbexp(c8xa) the constantsa, b, andc8
can be determined, leading to the following result valid
largex:

FIG. 1. The density of statesr(l) in double-logarithmic scales
Displayed are numerically determined spectra for hyperbranc
polymers for f 53 andp50.45, which are compared to the the
retical results of Sec. III C based on Eq.~54!. The numerically
determined spectra are~i! for m51 ~crosses!, and~ii ! for m random,
obeying Eq.~52! ~diamonds!. See text for details.
05110
-

f

1

y

ix
i-

r

f~x!.q1cx1/4expS 2 iAx

l D , ~57!

where c is still undetermined. In the limite→0, Eq. ~57!
does not fulfill the boundary condition atx5`, since it os-
cillates in undamped fashion. One can avoid this problem
rotating the integration contour in Eq.~34!:

R~l!52
1

lE0

eic`
dx e2x$f~x!% f

52
1

lE0

`

dx exp~ ic2eicx!$f̃~x!% f , ~58!

wheref̃(x)[f(eicx) is obtained from the solutions of

f̃~x!1le2 icx]x
2f̃~x!5q1p exp~2eicx!$f̃~x!% f 21.

~59!

Under this transformation, one has the following from E
~57! for largex:

f̃~x!.q1ceic/4x1/4expS 2 ieic/2Ax

l D . ~60!

Therefore, for2p/2,c,0 and positive reall it is possible
to obtain a solutionf̃(x) that fulfills the boundary condition
f(`)5q of Eq. ~56!.

We stop to note that the results for the density of sta
obtained via Eq.~58! and the solution of Eq.~59! are inde-
pendent of the phasec. However, the numerical integratio
of Eq. ~59! can be simplified considerably by lettingc de-
pend onl and adjusting it. We found empirically thatc5
2Alp/3 for l<1 andc52p/3 for l.1 are good choices

We are still faced with a nonlinear boundary value pro
lem. This problem can be solved numerically with th

d
FIG. 2. Same as in Fig. 1 for theD(m) distribution of Eq.~52!.

The theoretical curves are based on Eq.~54!. Here f 53 and p
varies, beingp50.3 ~squares!, 0.4 ~circles!, 0.45 ~diamonds!, 0.5
~triangles!, and 0.6~pentagons! from below. Forp50.5 the results
are obtained forNmax5500 ~upwards pointing triangles! and 4000
~downwards pointing triangles!. All other data are forNmax5500.
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help of standard integration subroutines implemented
MATHEMATICA , as described in Appendix E.

The density of states determined in this way is display
in Fig. 2 for various values ofp. Below the percolation
thresholdp5pc , it is easy to obtainr(l) for quite small
values ofl. This changes abovep5pc , where an infinite
cluster emerges; then, exemplarily, forp50.6 we can obtain
r(l) for l>1022.2. Here thel values are too large to allow
the determination of the smalll behavior ofr(l) ~see the
discussion in Sec. V!.

IV. NUMERICAL STUDIES

As a support of the integral equation approach discus
above, we have performed independent numerical eva
tions; among these we have also determined the spe
through numerical diagonalizations of sets of disordered
perbranched structures.

A. Regular structures

First, we have checked numerically the consequence
Eq. ~31! for finite regular structures of branching functiona
ity f and given generationg. These structures represent t
well known dendrimers. Now, the eigenvalue spectra of d
drimers are known to high accuracy, based on exact relat
@1,10# derived using the high symmetry of the correspond
C matrix. Here we evaluated, forp51 andm51, f (g) re-
cursively, as given in Eq.~31!; we then analyzed the resul
ing R(g), Eq. ~30!, in terms of the following sum of partia
fractions:

R(g)~l!5(
j

mj

l2l j
, ~61!

given that for a single structure andm51 the density of
statesr(l) is a sum ofd peaks, so that Eq.~41! turns into
Eq. ~61!. We have confirmed numerically forf 53 and g
55 ~using MATHEMATICA ! that this decomposition indee
results from the givenR(g) and leads to the known eigenva
uesl j and multiplicitiesmj of the corresponding dendrime

B. Random branched structurespË1

To numerically calculate the eigenvalue spectra of rand
branched polymers we have performed extensive nume
diagonalizations. Here, we focused on structures withf 53
and explored the eigenvalue spectra for various values o
bond probabilities.

We create our random structures along the procedure
lined in Sec. II by which hyperbranched structures of ar
trary size may be generated. Due to limitations of compu
memory and time needed for the subsequent diagona
tions, we restrict the number of bonds of every structure t
maximum of Nmax, i.e., we stop the procedure as soon
Nmax bonds have been created. In general we useNmax
5500. Forp50.3 and 0.4, in 1010 attempts this limit was
never reached. For the bond probabilityp50.45, the limit
was reached in 105 out of 109 attempts. To check the reli
ability of the so-obtained results we also sampled additio
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structures, by varyingNmax and letting it be Nmax
5200, 1000, and 4000. The so-obtained numerical res
for log10r(l) agree forp<0.45 within 5% for the whole
range displayed in Fig. 2. Forp50.5 and 0.6 we identified
for the same percentage value the range of the spectrum
is unaffected by artifacts generated due to the cutoff con
tion in the recursion algorithm; this region is given byl
>1022.2.

For each bond of a random branched structure we cho
bond strengthm with distributionD(m) as given in Eq.~52!.
The connectivity matrixA i j with entries weighted by thes
bond strengthsm is by construction a real symmetric matrix
We obtained the eigenvalues using a combination of
Householder method and the tridiagonal QL algorithm
diagonalization@36,37#.

We have accumulated the eigenvalues of all structu
generated for a specific value of the bond probabilityp,
where eigenvalues stemming from a structure withuSu mono-
mers are weighted with a factor of 1/uSu to obtain the proper
weights, as given by Eqs.~4! and ~16!. The results of this
procedure were already shown in Figs. 1 and 2. In Fig. 2
corresponding curves forp50.5 andp50.6 have been lim-
ited to the range that remains unaffected within 5% by
cutoff at Nmax5500, i.e.,l.1/Nmax. This can be seen by
comparing the results found forNmax5500 and 4000 forp
50.5 shown in Fig. 2. Forp50.5 the number of different
realizations used were 83107 and 1.73105 for Nmax5500
and 4000, respectively. Forp50.3, 0.4, 0.45, 0.5, and 0.6
with Nmax5500 the total number of realizations used w
1.131010, 5.031010, 8.33109, 8.53107, and 1.13107, re-
spectively, while out of these the number of structures hav
exactlyN550 bonds turned out to be around 1.33104, 2.6
3107, 1.53107, 1.93105, and 1.63103, respectively.

V. DISCUSSION

As stressed in Sec. II, from the density of statesr(l) one
can evaluate various quantities of physical importance.
obtainedr(l) both by a numerical treatment of the differe
tial equation~59! and also by a direct approach via the n
merical diagonalization of many realizations, as described
Sec. IV B.

First we focus on the stretching of GGSs under exter
fields@5,6,26,38#. Starting point is Eq.~6!. Choosing now the
direction of the field along they axis,F5Fey , the stretching
is given by

^dY~ t !&5^r y~ t !2r y~0!&2Fr0t/z

5
F

KE0

`

dlr1~l!
12exp~2lt/t!

l
, ~62!

where the average extends now also over the distinct rea
tions of the hyperbranched structures. In Fig. 3 we plot
double-logarithmic scales the dimensionless quantity^dŶ&
5^dY&K/F against the dimensionless timet̂5t/t for vari-
ous values ofp.
6-7
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Quantities of special experimental importance are
storage modulusG8 and the loss modulusG9, which we
evaluated with the help of Eqs.~11! and ~12!. We display
both the moduli and the angular frequencyv in dimension-

less units (v̂5v/t, Ĝ85G8/n̂kBT, and Ĝ95G9/n̂kBT) in
double-logarithmic scales in Figs. 4 and 5. Classically a
independent of the considered structure, for very smalv
valuesG8(v) increases quadratically inv, whereasG9(v)
shows av dependence. For very largev, on the other hand
G8(v) reaches a plateau, which following Eq.~48! should be
n̂kBTp f/2, whereasG9(v) decays asv21. The smallv be-
havior, especially in the case ofG8(v), is not attained, see
Fig. 5. In all cases the prefactors are dominated by sm
eigenvalues, being related to the inverse moments ofr1(l)
via Eqs.~44! and~43!. One may naively expect, based on E
~55!, that G9(v) should vanish likev21ln v in the high
frequency limit. We do not detect such a logarithmic dep

FIG. 3. The averaged dimensionless stretching, Eq.~62!, plotted

in double-logarithmic scales against the dimensionless timt̂
5t/t, see text for details. The results are obtained from the ana
cal and numericalr(l) data displayed in Fig. 2. The bond prob
abilities arep50.3, 0.4, and 0.45, from below.

FIG. 4. The dimensionless storage modulusĜ8(v̂) plotted in

double-logarithmic scales against the dimensionless frequencv̂
5v/t, see text for details. The results are obtained from the a
lytical and numericalr(l) data displayed in Fig. 2. The bond prob
abilities arep50.3, 0.4, and 0.45, from below.
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dency in Fig. 5. Moreover, the logarithm may be an artifa
due to the presence of largem values in Eq.~55!. In the
region between the small and largev regimes the behavio
of G8(v) and G9(v) is characteristic of the underlying
structures. Here we observe rather smooth curves. Thi
caused by the vast number of different hyperbranched st
tures with bonds of different strengths, which all contribu
to G8(v) and G9(v), and differs from the cases of singl
dendrimers or of hyperbranched structures with a fixed nu
ber of monomers@7#. In these cases one recognizes at int
mediatev in the behavior ofG8(v) and G9(v) the signa-
ture of the underlying structures; thus in Refs.@5,6# doubly
logarithmic displays ofG8(v) andG9(v), such as in Figs. 4
and 5, disclosed for dendrimers a logarithmic-type behav
which is related to their exponential growth withg.

In Figs. 3–5 the differences between the analytical a
the numerical diagonalization results are quite small a
hence hardly observable; this is due to the fact that^dY(t)&,
G8(v), andG9(v) do not test the smalll range in detail.
We now turn to discuss aspects for which the smalll range
is important. In the random graph case heuristic argume
have been given@25,26# for the existence of a Lifschitz tai
in the density of states. One expects the form

r1~l!;expF2
A~p!

Al
G , l→0, ~63!

ti-

a-

FIG. 5. Same as Fig. 4 for the dimensionless loss modu

Ĝ9(v̂).

-7 -6 -5 -4 -3 -2

0.6

0.8

1.2

1.4

1.6

log10

log10[ – lnρ ( λ)]

λ

FIG. 6. Results for the Lifshitz tail ofr(l) for different p,
obtained from integrating Eq.~59! ~dots!. The results are compare
with Eq. ~63! ~straight lines! for a fittedA0 value,A053.375. Here
p50.4, 0.45, 0.475, 0.4875, and 0.493 75 from left to right.
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whereA(p);A0(p2pc)
3/2 for p→pc . This behavior stems

from the fact that small eigenvalues are produced by la
linear regions occurring with small probability. Ifp ap-
proachespc the probability of these large linear structur
increases, resulting in a finite density of states forl→0 at
pc . In Fig. 6 we plotted log10@2 ln r(l)# obtained from the
integration of Eq.~59! against log10l in comparison with
form ~63! for values ofr(l) down to 10219 and p values
close to but smaller thanpc51/2. The agreement betwee
the analytical results and Eq.~63! is nice, when we take for
A0 the valueA053.375. Note that in our direct diagonaliza
tion calculations we did not reach the smalll range explored
here by the analytic approach: For instance we did not
tain, say forp50.45, eigenvalues lower thanl51024, see
Fig. 1.

Above the percolation thresholdp51/2 large linear re-
gions become rare again, since then the structures get m
branches. Unfortunately, we are not able to reach the smal
regime abovepc ~see, for instance, our Fig. 2 for the ca
p50.6), where a behavior such as Eq.~63! could again be
observed.

Inserting Eq.~63! into Eq. ~62! we obtain the following,
analogously to Ref.@38#, for larget:

^dY~ t !&;
F

KE dl expF2
A~p!

Al
G12exp~2lt/t!

l
.

~64!

The integral may be evaluated through a saddle-point
proximation, giving

^dY~ t !&;
F

K S 2h

kBTt
2c1tg8expF2H 3A~p!

2 J 2/3S t

t D 1/3G D ,

~65!

wherec1 is a constant. Due to the dependence ofA(p) on p
it follows that ^dY(t)& is quite sensitive top nearpc51/2.

VI. CONCLUSIONS

This work was devoted to the dynamics of randomly h
perbranched polymers in the framework of a Rouse-type
proach. In such an approach, the fundamental quantity
the dynamics is the density of states, see Eqs.~6!, ~11!, and
~12! as well as Refs.@5,6,26#. In former works on genera
hyperbranched polymers the ensemble averaged densi
states had been computed using numerical diagonaliza
techniques@7,23#. In parallel to these techniques, we us
here the replica method to evaluate the ensemble ave
over disordered structures; we obtained in this way an in
gral equation for the density of statesr(l). The results of
the two approaches are in convincing agreement for a la
range of l. From the data ofr(l) various quantities of
physical interest, i.e., the stretching and the storage and
moduli G8 andG9, could be numerically evaluated.

Besides the intrinsic interest of having an analy
method, the main advantage of the replica approach app
if one focuses on the long-time dynamics of structures cl
to the percolation threshold. This regime is governed by v
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low lying eigenfrequencies, which are mainly due to stru
tures displaying large quasilinear regions or having v
weak bonds. Such situations are rare and therefore diffi
to monitor in an approach based on direct numerical dia
nalization. On the other hand, the analytic approach co
reflect them; it allowed us, for instance, to treat the quest
of the appearance of Lifschitz tails in the density of state
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APPENDIX A: DETAILS OF THE n\0 LIMIT

The n→0 limit is performed as shown in Ref.@26#, by
using the integral representation of then-dimensional La-
placian

E dr 8 expF2 i
m

2
~r2r 8!2G f (ur 8u)

5~2p/ im!n/2

3expF 1

2im S ]r
21

n21

r
]rD G f ~r!r5ur u , ~A1!

which is valid for rotationally invariant functionsf (ur u).
From the structure of Eqs.~26! and ~29! it follows itera-

tively that f̂ (g)(r ) depends only onr[ur u. Therefore given
the relation

lim
n→0

E dr f ~r !5 lim
n→0

2pn/2

G~n/2!
E

0

`

dr r n21f ~r !5 f ~0!,

~A2!

valid for any rotationally invariant functionf (r ), one has
from Eq. ~28! for n→0

R(g)~l!5 i E
0

`

dr r expF i
l

2
r 2G$f̂ (g)~r !% f . ~A3!

On the other hand, one has the following from Eqs.~A1!,
~A2!, and~29!:

f̂ (g)~r !5qf̂ (g21)~0!1pE
0

`

dm D~m!

3expF 1

2im S ] r
22

1

r
] r D GexpF i

l

2
r 2G

3$f̂ (g21)~r !% f 21. ~A4!

Introducing the function f(x)[f̂(r @x#) with r @x#
[A2ix/l and using the relation

lx]x
2f ~r @x# !5 i S 1

2
] r

22
1

2r
] r D f ~r @x# ! ~A5!

for an arbitrary functionf (r ) we obtain Eqs.~30! and ~31!.
6-9
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Fromf (0)(0)51 and Eqs.~31! and~32! we conclude that
f (g)(0)51 is valid for all generationsg regardless of the
value ofq. Hence it is also valid for the whole Cayley tre
In the same fashion the propertyf (g)(`)5q follows from
Eq. ~A4! for all l with a small positive imaginary part. W
stop to note that we have just obtained the boundary co
tions, Eq.~56! of the main text.

APPENDIX B: PROOF OF THE PROPERTY, EQ. „37…

To establish Eq.~37! we note that the functions

ca~x!5 (
k51

`
ak21

k! ~k21!!
xk ~B1!

fulfill

x]x
2ca~x!5aca~x!, ~B2!

i.e., are eigenfunctions of the operatorx]x
2 to the eigenvalue

a. It is straightforward to verify the relation

E
0

`

daca~x!e2a/a5 (
k51

`
1

k!
akxk5eax21, ~B3!

via term by term integration. This can be used to determ
the action of exp@2lx]x

2# on eax:

exp@2lx]x
2#eax5exp@2lx]x

2#S 11E
0

`

daca~x!e2a/aD
511E

0

`

dae2laca~x!e2a/a5ex/(l11/a),

~B4!

where in the last step we used again Eq.~B3!. Rearranging
the right-hand side of Eq.~B4! results in Eq.~37! of the main
text.

APPENDIX C: LOW FREQUENCY EXPANSION

The quantityr0 is entirely determined byf0(x), see Eqs.
~34!, ~41!, and~45!. We now make use of the relation

f0852pe2x
f0

f

~22 f !f01~ f 21!q
, ~C1!

where the prime denotes the derivative with respect tox.
Equation~C1! follows by differentiating and rearranging Eq
~46!. From Eq.~C1! we obtain for the weight of the zer
eigenvalue

r05E
0

`

dx e2xf0
f 52

1

pE0

`

dx f08@~22 f !f01~ f 21!q#,

~C2!

from which Eq.~47! follows by performing the integration
To evaluate Eq.~47! one has to choose a specific solution
05110
i-

e

f

Eq. ~46! to determinef0(0). To cope with this, we note tha
from Eq. ~46! one has the following expansion in powers
pqf 22e2x:

e2x$f0~x!% f5qf (
k51

`

akp
k21q(k21)( f 22)e2k x. ~C3!

Inserting this into Eq.~47! we obtain

r05qf (
k51

`
1

k
akp

k21q(k21)( f 22). ~C4!

On the other hand, one obtains from Eq.~15!

r05 (
uSu51

`
1

uSu
WuSu , ~C5!

where WuSu5(S,S5uSuwS is the probability that a monome
belongs to a cluster ofuSu monomers. Finally from the ob
servation thatWuSu contains the factorpuSu21quSu( f 22)12 the
identification

akp
k21qk( f 22)125Wk ~C6!

follows. A statement similar to Eqs.~C3! and~C6! was given
in Ref. @39#. Thus the total probability that a monomer
contained in a finite cluster is given by$f0(0)% f and one has
to choose the solution of Eq.~46! that is unity forx50 and
p,pc .

As an illustration of these findings we consider the ca
f 53, where the solution of Eq.~46! with the desired prop-
erties is

f0~x!5
ex

2p
~12A124pqe2x!. ~C7!

This gives indeedf0(0)51 for p,pc51/2. On the other
hand, one hasf0(0)51/p21, which in view of Eq.~C3!
reflects the fact that above the percolation threshold we h
the finite probability 12(1/p21)3 that a monomer is con
tained in the infinite cluster.

From Eqs.~34! and~45! we remark thatR0 can be calcu-
lated based on the knowledge off0(x) andf1(x). Inserting
Eq. ~45! into Eq. ~33! we obtain from the linear term inl

pe2xf0
f 21f152xf08f09^m

21&m . ~C8!

This relation allows now to determineR0:

2R05 f E
0

`

dx e2xf0
f 21f1

52
f ^m21&m

p E
0

`

dx xf08f095
f ^m21&m

2p E
0

`

dx ~f08!2

52
f ^m21&m

2p E
0

`

dx
~f02q!f0

~22 f !f01~ f 21!q
f08 , ~C9!

from which Eq.~49! follows.
6-10
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APPENDIX D: LARGE l BEHAVIOR

To obtain the largel behavior ofr(l), we make the
substitutionf(x)→f(x/l); Eq. ~54! takes then in the limit
l→` the form

f`~x!1xf`
9 ~x!5q. ~D1!

Introducing the functionK1(x) via

f`~x!5q12piAxK1~2iAx!, ~D2!

Eq. ~D2! turns into Bessel’s differential equation forK1(x),
Eq. ~8.494! of Ref. @40#:

]x
2K1~x!1

1

x
]xK1~x!2S 11

1

x2D K1~x!50. ~D3!

Then taking into account the boundary conditions, Eq.~56!,
K1(x) can be identified with the modified Bessel function
the first kind. Using the smallx expansion ofK1(x), Eq.
~8.446! of Ref. @40#, we obtain

Im$f`~x!% f5p f px1O~x2!, ~D4!

and inserting this into the expression

r~l!5
1

p

1

l
ImE

0

`

dxe2x$f~x/l!% f ~D5!

for the density of states, we obtain Eq.~55!.

APPENDIX E: SOLUTION OF THE NONLINEAR
BOUNDARY VALUE PROBLEM

We restrict the discussion here to the casef 53, since the
generalization to arbitrary values off is straightforward. To
solve the nonlinear boundary value problem given by E
~59! we first integrate Eq.~59! using the subroutine NDSolv
le

ul

ul

-

05110
.

of MATHEMATICA with the initial valuesf(`)5q, f8(`)
50. This leads to a solutionf i(x) which differs from 1 at
x50. Therefore we have to add a second solutionfh(x)
5f(x)2f i(x), obeying the equation

fh~x!1le2 icx]x
2fh~x!5p exp~2eicx!$2f i~x!

1fh~x!%fh~x!, ~E1!

which is complemented with the boundary conditions

fh~0!512f i~0! and fh~`!50. ~E2!

The solution to Eq.~E1! is obtained recursively. In the firs
step we linearize Eq.~E1! by neglecting the term quadratic i
fh(x). To obtainfh

k(x) of the kth recursion step we linear
ize Eq.~E1! by inserting the solutionfh

k21(x) of the last step
in the curly brackets of the right-hand side, which leads
the iteration scheme

fh
k~x!1le2 icx]x

2fh
k~x!5p exp~2eicx!$2f i~x!

1fh
k21~x!%fh

k~x!. ~E3!

These linear equations are integrated with the initial valu

fh
k8~xm!5fh

k218~xm! and fh
k~xm!50, ~E4!

wherexm is a large number, adjusted to maximize numeri
precision. After each iteration step the solutionfh

k(x) is nor-
malized according to the first of the conditions, Eq.~E2!, i.e.,
fh

k(0)512f i(0). Note that it is important to integrate Eq
~C8! from x5` to x50, since otherwise rounding error
would always produce an exponentially growing solution.
turns out that within this procedure the solution converg
rapidly after a few iteration steps. Especially forl!1, the
solution is obtained with sufficient accuracy after the fi
iteration step, ifp lies below the percolation threshold.
.
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